Mean Value Coordinates for Arbitrary Spherical Polygons and Polyhedra in

نویسندگان

  • Torsten Langer
  • Alexander Belyaev
  • Hans-Peter Seidel
چکیده

Since their introduction, mean value coordinates enjoy ever increasing popularity in computer graphics and computational mathematics because they exhibit a variety of good properties. Most importantly, they are defined in the whole plane which allows interpolation and extrapolation without restrictions. Recently, mean value coordinates were generalized to spheres and to ’3. We show that these spherical and 3D mean value coordinates are well-defined on the whole sphere and the whole space ’3, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean value coordinates in 3D

Abstract: Trivariate barycentric coordinates can be used both to express a point inside a tetrahedron as a convex combination of the four vertices and to linearly interpolate data given at the vertices. In this paper we generalize these coordinates to convex polyhedra and the kernels of star-shaped polyhedra. These coordinates generalize in a natural way a recently constructed set of coordinate...

متن کامل

Small deformations of polygons and polyhedra

We describe the first-order variations of the angles of Euclidean, spherical or hyperbolic polygons under infinitesimal deformations such that the lengths of the edges do not change. Using this description, we introduce a quadratic invariant on the space of first-order deformations of a polygon. For convex polygons, this quadratic invariant has a positivity property, leading to a new proof of t...

متن کامل

Interpolation error estimates for mean value coordinates over convex polygons

In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter on...

متن کامل

A New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity

Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...

متن کامل

Maximum Entropy Coordinates for Arbitrary Polytopes

Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle’s vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006